
Resource-Oriented
Programming with

Graded Modal Types
Dominic Orchard Vilem-Benjamin Liepelt

Harley Eades III

https://granule-project.github.io/

https://granule-project.github.io/

Data
Infinitely copiable

Arbitrarily discardable

Universally unconstrained

Problem
(Some) data acts as a resource

Do this in an extensible way
Capture resource constraints in types

Solution

Ignoring this leads to bugs!

Linear
typesBe strict about resources

Graded
modal
types

Track information
for quantitative reasoning

SMT
solver

(e.g. Z3)

Indexed
types

Precision

!4

anule’s type system

• Efficiency
• In-place update

• Usage protocols & resources
• File handles*
• Streaming I/O
• Session typed channels*
• Language interoperability
• Low-level stateful protocols
• Pointers/References**
• Mutable arrays**
• Circuit modeling

• Program reasoning

 5

*implemented in Granule
**experimental support / work in progress

Why linearity?

Initial Demo
Linearity, modalities,

and two graded modalities

□n A where n ∈ ℕ
□[n..m] A where n, m ∈ ℕ ∧ n ≤ m

…

♢XA
♢YA

♢WA
♢ZA

…

☐RA ☐SA

☐TA☐UA

☐PA

Indexed
families

with structure
matching the shape of proofs/programs or a semantics

♢A ☐A

 7

Graded modalities (informally)

 8

A [0] ⟶ ()

A [m + n] ⟶ (A [m] × A [n])

A [1] ⟶ A

A [m * n] ⟶ (A [m]) [n]

A [m] ⟶ A [n] (where m ≥ n)

Graded necessity (coeffects/graded comonads)

weakening

contraction

use (dereliction)

composition (promotion)

approximation

Graded by pre-ordered semiring

 9

ℕ ∪ {∞}, + ,0, ⋅ ,1, =

• (Extended) naturals
• Intervals
• Security levels
• Products
• (Extended) positive rationals
• (In progress) Monotonicity (à la Arntzenius & Krishnaswami)
• <insert your idea here>

Graded necessity in Granule

Dataflow paths

Linear

use

Weakening

discard

Contraction

split

Non linear

1 0 +

Composition

f

g

*

Grading semiring captures (backwards) dataflow

 11

Next demo

Verification via
first-class grades
and indexed types

Security levels

Public

Private

Irrelevant

≥

≥

Next demo

Dataflow analysis via grading
λx . λy . let z = f x in (z, g z y)Consider

f

g

↟f *(1 + ↟g1) ↟g2

1 + ↟g1

f

g

↡f ◦↡g ↡f

f

g

x y

Flow graph Backward
↟hi = demands on ith parameter to h

Forward
↡h = provision of h

Last demo
(monoid) graded possibility

Smirnov - Graded monads and rings of polynomials
2008 Durov - New approach to Arkelov geometry

2013

2014

Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
Ghica, Smith - Bounded linear types in a resource semiring

Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus

2016 Gaboardi, Katsumata, O, Breuvart, Uustalu - Combining effects & coeffects via grading

Katsumata - Parametric effect monads and semantics of effect systems.
O, Petricek, Mycroft - The semantic marriage of effects and monads

2019 O, Liepelt, Eades - Quantitative program reasoning with graded modal types

Petricek, O, Mycroft - Coeffects: a calculus of context-dependent computation.

Potted history of graded types

.... various coeffect papers

graded monads
graded comonads

both

Key

 17

Come see Granule at ICFP 2019

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

� ` A0 ⇠ A B �1 � ` �1B ⇠ �1B0 B �2

� ` A ! B ⇠ A0 ! B0 B �1] �2
U!

� ` A ⇠ A0 B �1 � ` �1B ⇠ �1B0 B �2

� ` AB ⇠ A0 B0 B �1] �2
U���

(� : �) 2 �

� ` � ⇠ � B ;
U���=

� ` A : � (� :9 �) 2 �

� ` � ⇠ A B � 7! A
U���9 � ` K ⇠ K B ;

U���
� ` A : �

� ` A ⇠ A B ;
U=

� ` A ⇠ A0 B � � ` �� ⇠ �� 0 B � 0

� ` ⌃�A ⇠ ⌃�0A0 B �] � 0
U⌃

� ` A ⇠ A0 B � � ` �c ⇠ �c0 B � 0

� ` ⇤cA ⇠ ⇤c0A0 B �] � 0
U⇤

Fig. 2. Type unification rules

Type uni�cation is given by relation � ` A ⇠ B B � in Figure 2. Uni�cation is essentially a

congruence over the structure o
f types (under a context �), crea

ting substitutions from uni�cation

variables to types, e.g. (U���9) for � ⇠ A (which has a symmetric counterpart for A ⇠ � elided

here for brevity). Universally quanti�ed variables can be uni�ed with themselves (U���=), and also

with uni�cation variables via (U���9). In multi-premise rules, substitutions generat
ed by unifying

subterms are then applied to types being uni�ed in later premises, e.g., as in (U!). Type uni�cation

extends to grading terms, which can also contain type variables. We elide the de�nition here since

it is straightforward and follows a similar scheme to the �gure.

Substitutions can be typed by a type-variable environment, � ` � (called compatibility) which

ensures that � is well-formed for use in a particular context. Compatibility is a meta-theoretic

property, which follows from our rules. Two substitutions �1
and �2 may be combined as �1] �2

when they are both compatible with the same type-variable environment � (i.e., � ` �1 and � ` �2).

If � 7! A 2 �1 and � 7! B 2 �2 and if A and B are uni�able � ` A ⇠ B B � then the combined

substitution �1] �2 has � 7! �A and also now includes � . For example:

(� 7! (Int ⇥ �))] (� 7! (� ⇥ Char)) = � 7! (Int ⇥ Char), � 7! Char,� 7! Int

If two substitutions for the same variable cannot be uni�ed, the
n context composition is unde�ned,

indicating a type error which is reported to the user in the implementation. Disjoint parts of a

substitution are simply concatenated. Composition also computes the transitive closure of
the

resulting substitution. The app
endix (De�nition ??) gives the full de�nition.

By lifting types to kinds with ", polymorphism in the type of grades is also possible, e.g.

poly : 8 {a : Type, k : Coeffect, c : k} . a [(1+1)*c] ! (a, a) [c]

poly [x] = [(x, x)]

The grade (1+1)*c is for some arbitrary resource algebra k of kind Coe�ect. Internally, the type

signature c : k is interpreted as c :"k (a type variable lifted to a kind). We also promote data types

to the kind level, with data constructors lifted to type constructors.

4.3.3 Top-level definitions & indexed types. As seen in Section 2, Granule supports algebraic a
nd

generalised algebraic data types (providing
indexed types) in the style of Haskell [Peyton Jones

et al. 2006]. At the start of type checking, all type constructors are kind checked and all data

constructors are type checked.
In typing relations here, the D environment holds type schemes for

data constructors, along with a substitution describing coercions from type variables to concrete

types, used to implement indexing. For example, the Cons data constructor of the Vec type in

Section 2.4 has the type Cons : a ! Vec n a ! Vec (n + 1) a which is then represented as:

Cons : (8(� : Type,n : Nat,m : Nat) . � ! Vec n� ! Vecm� , ��) 2 D where �� =m 7! n + 1

We use �� ,� 0� to range over substitutions used for the coercions, implementing the indices of

indexed type data constructors.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Artic
le 1. Publication date: January 2018.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1
�antitative program reasoning with graded modal types
DOMINIC ORCHARD, University of Kent, UKVILEM-BENJAMIN LIEPELT, University of Kent, UKHARLEY EADES III, Augusta University, USA
In programming, data is often considered to be in�nitely copiable, arbitrarily discardable, and universally
unconstrained. However this view is naïve: some data encapsulates resources that are subject to protocols (e.g.,
�le and device handles, channels); some data should not be arbitrarily copied or communicated (e.g., private
data). Linear types provide a partial remedy by delineating data in two camps: “resources” to be used but
never copied or discarded, and unconstrained values. However, this binary distinction is too coarse-grained.
Instead, we propose the general notion of graded modal types, which in combination with linear and indexed
types, provides an expressive type theory for enforcing �ne-grained resource-like properties of data. We
present a type system drawing together these aspects (linear, graded, and indexed) embodied in a fully-�edged
functional language implementation, called Granule. We detail the type system, including its metatheoretic
properties, and explore examples in the concrete language. This work advances the wider goal of expanding
the reach of type systems to capture and verify a broader set of program properties.ACM Reference Format:Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2018. Quantitative program reasoning with
graded modal types. Proc. ACM Program. Lang. 1, CONF, Article 1 (January 2018), 29 pages.1 INTRODUCTION
Most programming languages (and type systems) take the view that data is unrestricted: it can be
replicated, discarded, and used without constraint. However, this view is naïve and can thus lead to
software errors. For example, some data is subject to con�dentiality requirements and therefore
should not be copied arbitrarily. Some data acts a proxy for an external resource (e.g., a socket,
hardware device, or �le) and therefore is sensitive to the order of operations applied to it. Dually,
some programs are sensitive to the size of their inputs, with non-functional aspects (e.g., execution
time) dependent on data. Thus, the reality is that some data acts as a resource, subject to constraints.
In this paper we present Granule, a typed functional language that embeds a notion of data as a

resource into the type system in a way that can be specialised to di�erent notions of resource and
data�ow property. Granule is based on a combination of linear types, indexed types (lightweight
dependent types), and the recent notion of gradedmodal types to enable novel quantitative reasoning.
Linear types, in their strictest sense, treat data like a physical resource which must be used once,

and then never again [Girard 1987; Wadler 1990]. For example, we can type the identity function as
it binds a variable, then uses it, whereas the K combinator �x .��.x is not linearly typed as � is never
used. To overcome this restriction, linear logic provides a modal operator ! which captures and
tracks non-linear, unconstrained values. This provides a binary view: either values are linear (like a
resource) or non-linear (like the traditional view of data). However, in programming, non-linearity
rapidly permeates programs. Bounded Linear Logic (BLL) instead provides a more �ne-grained
view, replacing ! with an family of modal operators indexed by terms capturing the upper bound
on usage [Girard et al. 1992], e.g., !2A captures A values that can be used at most twice. The proof
rules then manipulate these indices, accounting for contraction, weakening, and composition.Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of

Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.2018. 2475-1421/2018/1-ART1 $15.00https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://granule-project.github.io/

