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C11 memory model is too weak
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Out-Of-Thin-Air (OOTA) behaviours

a=1 b=17

a = [x]; [Y] instruction

[y] = [X] reordering v
compiler
= [x]; b = |y]; optimisation &

[y] .= 14+a—a; || [x] == 1+b—b; instruction v

reordering
:. [X]' b : [y]’ out-of-thin-air X

] = a [x] == b; behaviour

C11 allows this execution for all three programs !
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Theorem
VP. VG € [[P]]IMM. 3S. Sinit —*S A S>G

Proof by the (weak) Simulation.

G F (Co, lo) —* (Cp, I,) — traversal of G
R(G, (G, i), Si, Xi) — simulation relation

S; > X; — candidate execution

R
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