
EasyCrypt:
Applying Program
Verification
Techniques to
Cryptography

Or where an understanding of
concurrency could help

CW-S-REPLS 2019

François Dupressoir
(fdupress@gmail.com)

Security Reductions: A Modern View

Cryptographic

Assumption

Adversary 𝐵

Cryptographic

Construction

Adversary 𝐴

From any adversary 𝐴 against the construction:

»construct an adversary 𝐵 against the primitive, such that

» if 𝐴 “breaks the security of” the construction using 𝑟𝐴 resources with
probability 𝑝𝐴, then 𝐵 “breaks the security of” the assumption using 𝑟𝐵
resources with probability 𝑝𝐵, and

»𝑟𝐵 and 𝑝𝐴 are “small” when 𝑟𝐴 and 𝑝𝐵 are “small”

Tightening Definitions

» Security is traditionally modelled using security
games

• Oracles specify interfaces for the adversaries to
interact with,

• A security experiment restricts adversary
interactions with oracles and defines a winning
condition,

• A definition of adversary advantage normalizes
probability of winning (avoids random chance
wins)

» Adversary’s resources include time, memory,
number of queries to oracles, …

#universityofsurrey 3

experiment 𝐼𝑁𝐷 𝐶𝑃𝐴𝐸
𝐴:

𝑘 ←$ 𝐸. 𝑘𝑒𝑦𝑔𝑒𝑛();
𝑚0, 𝑚1 ←$ 𝐴. 𝑐ℎ𝑜𝑜𝑠𝑒

𝐸.𝑒𝑛𝑐 𝑘,⋅ ();
𝑏 ←$ 0,1 ;
𝑐 ←$ 𝐸. 𝑒𝑛𝑐 𝑘,𝑚𝑏 ;

𝑏′ ←$ 𝐴. 𝑔𝑢𝑒𝑠𝑠
𝐸.𝑒𝑛𝑐 𝑘,⋅ 𝑐 ;

return 𝑏 = 𝑏′;

𝐴𝑑𝑣𝐸
𝐼𝑁𝐷𝐶𝑃𝐴(𝐴) = Pr 𝐼𝑁𝐷 𝐶𝑃𝐴𝐸

𝐴: ⊤ −
1

2

Constructing the inverter: game sequence

experiment 𝐺𝑎𝑚𝑒0:

𝑠𝑘, 𝑝𝑘 ←$ 𝑃. 𝑘𝑒𝑦𝑔𝑒𝑛();
𝑚0, 𝑚1 ←$ 𝐴. 𝑐ℎ𝑜𝑜𝑠𝑒

𝐻.𝑜(𝑝𝑘);
𝑏 ←$ 0,1 ;

𝑟 ←$ 0,1 𝜅;

𝑠 ← 𝑃. 𝑝(𝑟);
ℎ ←$ 𝐻. 𝑜(𝑟);
𝑐 ← 𝑠||ℎ ⊕𝑚𝑏;

𝑏′ ←$ 𝐴. 𝑔𝑢𝑒𝑠𝑠
𝐻.𝑜 𝑐 ;

return 𝑏 = 𝑏′;

experiment 𝐺𝑎𝑚𝑒1:

𝑠𝑘, 𝑝𝑘 ←$ 𝑃. 𝑘𝑒𝑦𝑔𝑒𝑛();
𝑚0, 𝑚1 ←$ 𝐴. 𝑐ℎ𝑜𝑜𝑠𝑒

𝐻.𝑜(𝑝𝑘);
𝑏 ←$ 0,1 ;

𝑟 ←$ 0,1 𝜅;

𝑠 ← 𝑃. 𝑝(𝑟);

ℎ ←$ 0,1 𝜅′;

𝑐 ← 𝑠||ℎ ⊕𝑚𝑏;

𝑏′ ←$ 𝐴. 𝑔𝑢𝑒𝑠𝑠
𝐻.𝑜 𝑐 ;

return 𝑏 = 𝑏′;

experiment 𝐺𝑎𝑚𝑒2:

𝑠𝑘, 𝑝𝑘 ←$ 𝑃. 𝑘𝑒𝑦𝑔𝑒𝑛();
𝑚0, 𝑚1 ←$ 𝐴. 𝑐ℎ𝑜𝑜𝑠𝑒

𝐻.𝑜(𝑝𝑘);
𝑏 ←$ 0,1 ;

𝑟 ←$ 0,1 𝜅;

𝑠 ← 𝑃. 𝑝(𝑟);

ℎ ←$ 0,1 𝜅′;

𝑐 ← 𝑠||ℎ;

𝑏′ ←$ 𝐴. 𝑔𝑢𝑒𝑠𝑠
𝐻.𝑜 𝑐 ;

return 𝑏 = 𝑏′;

Bypass random

oracle

One-Time Pad

Pr 𝐺𝑎𝑚𝑒0: ⊤ ≤
Pr 𝐺𝑎𝑚𝑒1: ⊤ + Pr[𝐺𝑎𝑚𝑒1: 𝑟 ∈ 𝐻. ℎ]

Pr 𝐺𝑎𝑚𝑒1: ⊤ = Pr 𝐺𝑎𝑚𝑒2: ⊤
Pr 𝐺𝑎𝑚𝑒1: 𝑟 ∈ 𝐻. ℎ = Pr[𝐺𝑎𝑚𝑒2: 𝑟 ∈ 𝐻. ℎ]

Security Reductions: A “Post-Modern” View

» EasyCrypt, and CertiCrypt (Barthe et al, POPL 2009) before it, cast the problem of verifying game-
based cryptographic proofs as a program verification problem

• Schemes, oracles, experiments, adversaries are imperative, probabilistic programs (pWhile)

• pWhile programs are given monadic semantics

• Claims relating probabilities of events in two programs are reduced to probabilistic, relational statements
about programs

𝑃 𝑐1~𝑐2 𝑄 ⇔ ∀𝑚1, 𝑚2. 𝑃 𝑚1 𝑚2 ⇒ 𝑄# 𝑐1 𝑚1
𝑐2 𝑚2

where, given a relation 𝑄 over memories, 𝑄# is defined as follows

𝑄# 𝜇1 𝜇2 ⇔ ∃𝜇. 𝜇|𝑚1
= 𝜇1 ∧ 𝜇|𝑚2

= 𝜇2 ∧ ∀(𝑚1, 𝑚2) ∈ 𝜇. 𝑄 𝑚1 𝑚2

» Proving the lifted relation on final memories consists in constructing a product program that computes
joint memory 𝑚

• Done mainly using structural relational Hoare logic,

• With some trapdoors down to semantics when the programs are too dissimilar.

#universityofsurrey 5

Achievements

» Standard Cryptographic Primitives

• OAEP, PSS, CMAC, Merkle-Damgård, SHA-3

• TLS-MEE-CBC (from TLS1.2)

» Some cryptographic protocols

• Electronic voting

• Garbled circuits and Secure Function Evaluation (2-PC)

• Authenticated Key Exchange

» Applications to cryptographic implementations

#universityofsurrey 6

Cryptographic Security for Implementations

#universityofsurrey 7

Cryptographic

Assumption

Adversary 𝐵

Cryptographic

Construction

Adversary 𝐴

Cryptographic

Implementation

Side-Channel

Adversary 𝑅

Full Functional Correctness

+

Leakage Simulation

Challenges

» Practice of specifying protocol security moving away from game-based notions

• Simulation-Based security: no adversary can distinguish between the scheme and a simulator built on top of
an ideal functionality (trusted third-party)

• Composable notions

» As we aim to provide stronger guarantees at lower abstractions, we need finer-grained model of what
can go wrong, what leaks

#universityofsurrey 8

Environment

A
Scheme

Environment

A
Simulator

Ideal

Functionality

Going Up from the Top

» Interactive systems are increasingly used by the crypto community for compositional security

• Constructive Cryptography

• Universal Composability

» The issue is with interactivity, not with composition

• Current techniques handle (modular and sequential) composition quite well

• Issues arise when composition is parallel:

» Having proof tools that support them will be crucial in scaling machine-checked crypto up to larger
constructions, and real systems

» Could we leverage ideas from distributed system verification?

#universityofsurrey 9

Going Down from the Bottom

» Cryptographic implementations are hard to get right

• Cryptography needs to be fast to be used

• Getting it to be fast means optimizing

» Non-uniform optimizations may lead to side-channels

• Execution time

• Memory accesses (through cache or instruction cache)

• Power consumption

» Some of these optimizations are done below standard level of reasoning

• Division on most chips checks for bit size of operands to select long or short division

• Cache behaviour is hard to reason about

• Speculative execution, buffered memory …

» We need models of what happens below software to reason about security of software

#universityofsurrey 10

