Symbolic Verification of Epistemic
Properties in Programs

loana Boureanu (Univ. of Surrey, SCCS)

joint work @ IJCAI 2017,
with N. Gorogiannis (Middlesex, Facebook) and F. Raimondi
(Middelsex, Amazon)

N
4
SOREY

Asking you...

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

[azin)
=
 SURREY

Motivation

» epistemic logics, i.e., logics of knowledge — “knowing
logical facts” — expressions of rich properties (e.g.,
unlinkability, anonymity)

PN
=
SCRKEY

Motivation

» epistemic logics, i.e., logics of knowledge — “knowing
logical facts” — expressions of rich properties (e.g.,

unlinkability, anonymity)

» widely used in verification of general-purpose concurrent &

distributed SYSTEMS (e.g., Byzantine agreement) via

epistemic model checkers such as MCMAS, Verics, MCK,

etc....

= Google Scholar

*

Articles

Any time
Since 2019
Since 2018

epistemic model checking ﬂ

Verifying epistemic properties of multi-agent systems via bounded model
o

ique, and
by 202 Rolated aricles Al 15 versions

MCMAS: A model checker for the verification of multi-agent systems
A 20095

12

A

SCRKEY

Motivation ...

» epistemic logics widely used in systems’ model checkers
systems BUT...

GOOD TRY, 0LD BEAN,
¥

=N
=
SCRKEY

Motivation ...

» epistemic logics widely used in systems’ model checkers
systems BUT...

GOOD TRY, 0LD BEAN,
¥

=N
=
SCRKEY

Motivation ...

» epistemic logics widely used in systems’ model checkers
systems BUT...

GOOD TRY;,0LD BEAN,
¥

» :(these are not epistemic specifications on program code

=N
=
SCRKEY

Motivation ...

» epistemic logics widely used in systems’ model checkers
systems BUT...

GOOD TRY, LD BEAN,
¥

» :(these are not epistemic specifications on program code

» :(itis hard to capture rich (e.g., first-order) state
specifications, since the base logic of most
temporal-epistemic verifiers is propositional

PN
=
SCRKEY

Motivation ...

» epistemic logics widely used in systems’ model checkers
systems BUT...

GOOD TRY,0LD BEAN,

» :(these are not epistemic specifications on program code
» :(itis hard to capture rich (e.g., first-order) state
specifications, since the base logic of most
temporal-epistemic verifiers is propositional
> ... meanwhile, base logics of programs are very
expressive + predicate transformers are used to reduce
verification to FO queries to SMT solvers ... -

A
Sty

Aim

» be able to verify epistemic properties of programs

PN
=
SCRKEY

Aim

» be able to verify epistemic properties of programs
» agents can OBSERVE certain program variables

PN
=
SCRKEY

Aim

» be able to verify epistemic properties of programs
» agents can OBSERVE certain program variables

» the program (i.e., state-transition relation) is KNOWN to all
agents

PN
=
SCRKEY

Aim
» be able to verify epistemic properties of programs

» agents can OBSERVE certain program variables

» the program (i.e., state-transition relation) is KNOWN to all
agents

» focus on S5-like epistemic properties about program states
“agent observer1 knows that variable x is equal to y + 5"

“agent observer2 does not know that variable x is equal to
y + 5"

o = = = = 9Dac

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

[azin)
=
 SURREY

Syntax

v

v

pCV
oACp
Ng=p\0s

Setup

a finite set of agents or program-observers
a countable set of variables

a non-empty set of program variables

the variables the agent A € A can observe
variables agent A € A cannot observe

PN
=
SCRKEY

Syntax Epistemic Language L

> LoF base language = a quantifier-free, FO language
» Lro extension of Lqr with quantifiers
¢ZZIF‘_|¢‘¢1/\¢2‘¢1V¢2’¢1 =>¢2’VX.¢‘E|X.¢
> Lk extension of LqoF with epistemic modalities K,
az=7|"alagANag | oy Vas | ar = ap | Kga

=N
=
SCRE

Program-Epistemic Specifications £k

» C a (possibly infinite) set of commands
» Lok extends Lk with every formula 5 = O¢a,
meaning “at all final states of C, a holds”

Example

“at the end of the vote-counting, a partial observer (who can
see certain aspects of the program) does not know that voter 1
vote for candidate 17:

e VotingProgram ™ \public—observer V1 1

where V; i is a formula in Lqr which here is linear integer =
arithmetic.

First-order Semantics

> state s:V—D.
» set of all states U
Sk <= in accordance to interpretation /
SE¢roge = (SEd1)o(sk o)
Sf=—¢ = SiEo
Sk 3Ix.p < dceD.slx—c|lEo¢
S = Vx.¢ < VeceD.s[x—c]E .

where o is A, V or =, and [is an interpretation of constants,
functions and predicates in Lqgr over the domain D.

The interpretation [¢] of a first-order formula ¢ is the set of
states satisfying it, i.e., [¢] = {se U | s = ¢} -

A
Sty

Towards a Program-Epistemic Semantics

» Indistinguishability relation ~x over states

s~x s < Vxe X.(s(x) =5 (x)),
where X C V
» Transition relation (over states) of any command C

Re(s) ={s"I(s,s') € Rc} Rc(W) =Usew Rc(s)
» strongest postcondition operator is a partial function

SP(—, —) :Lro X C — Lro

SP(¢,C) =+ it [v] = Re([4])

=N
=
SCRE

Interpretation of a program specification
The satisfaction relation W, s |-

W,slFn <~ sk

W,s Ik -« — W.,slf «a

W,slFajoap < (W,slkFay)o(W,slF as)
W,slFKaa <<= Vs eW.(S~p, 8 = W, IFa)
W,slFOca <= Vs € Rg(8). (Re(W),s I a)

where o is A, V, or =, and C € C is a command.

» Validity of program specifications ¢ I 3
for all s € [¢], we have that [¢], s IF 3.

¢ IF Kam means that in all states satisfying ¢, agent A knows 7

¢ |- Uc—Kam means: if command C starts at a state satisfying
¢, then in all states where the execution finishes, agent A does -
not know =

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

[azin)
=
 SURREY

Reducing to First-Order Validity
e

» Recall: strongest postcondition operator is a partial
function SP(—, —) : Lgo X C — Lo

SP(¢,C) =4 ift [¢] = Re([¢])

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

... atranslation 7 : Lx — Lfg of epistemic formulas into the first-order language.

72
=
SCRIGEY

T(p,m) =7 7(¢, ay 0 ap)= 7(¢, ay) o 7(¢,)
T(¢, ~a)= =7(¢, a) T($,Kar) =Vna. (¢ = 7(9,)

Over-approximation

» Recall: strongest postcondition operator is a partial
function SP(—, —) : Lro x C — Lo

SP(¢,C) =4 ift [v] = Re(ll)

» afunction f : Lro x C — Lo over-approximates the
strongest postcondition iff ... [f(¢, C)] 2 R¢([¢]) for all
o€ Lrpand CeC

e
When the strongest postcondition can only be

over-approximated (such as in programming languages with
unbounded loops), we show that the validity of positive
epistemic specifications reduces to that of first-order fragments, =

=

in a sound but incomplete way. sy

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

[azin)
=
 SURREY

Simple, Loop-Free Programming Language

Command C SP(¢,C)

X =% Jy. dly/x]

X:=e Jy. (x = ely/x] noly/x])

if(mw) Cy else Co SP(m A ¢,Cqi)V SP(—7 A ¢, Co)
Ci; G SP(SP(¢, Cy), C2),

where x is a program variable and y is a fresh logical variable.

» SP(—,—) may only introduce existential quantifiers.

» If x ¢ FV(¢), then SP(¢,x :=€) = (¢ Ax =e). Thatis, if x
is unrestricted, no quantifiers are introduced.

» For a fixed C, the size of SP(¢, C) is polynomial in ||¢||.

=N
=
SCRKEY

An Example — The Dining Cryptographers

— used as evaluation case-study in verifying epistemic

properties
None pald 1jaxor 1 A pa|d 0 (nat(o xor 1)}
A A
\\ \\
/ \0 / \0
N, \
B C B C

01 mor 1) 140 mee 1) 041 moe 1) 140 mae 1)

lxorlxor 0=0 1xor Oxor 0=1

— dinner may have been paid by their employer, or by one of the agents.
— reveal whether one of the agents paid, but without revealing which one.
— each pair of adjacent agents sees a coin

— each announces the result of XORing three Booleans: the two coins
observable by her and the status of whether she paid for the dinner.

— the XOR of all announcements is proven to be equal to the disjunction of .
whether any agent paid. e

SCRKEY

Instantiation
agents A={0,....n—1}
program variables p={x}u{p,c|0<i<n}
x is the XOR of announcements; p; encodes whether agent i
has paid; and, c; encodes the coin shared between agents / — 1

and J.
observable variables by i € A 0, = {X,Pi,Ci, Cit1modn}
n;=p\o;.
protocol = an assignment C:
X = @/ o PiDCD C(/+1 mod n) (C)

initial states, / == at most one agent paid

>
= (P/ = /\/ 0,j#i _‘Pj)
strongest postcondition

12

(/ C): I'n (X <~ @/ o Pi®CD C(/—',—1 mod n)) ‘:ﬁn

Specifications

o = —py = ((Ko Ao ﬂﬂ) Vv (/\,"7;11 _‘KOPI)>
if agent 0 has not paid then she knows that no agent paid, or (in
case an agent paid) she does not know which one.

az = Ko (X@\/, oP/)
agent 0 knows that x is true iff one of the agents paid.

az = Kopy
agent 0 knows that agent 1 has paid

To verify Il Ocaq, I lFOgaz and 1l Oeas

We construct the QBF formula SP(/, C) A =7(SP(I, C), «;), feed
it to Z3, and test for unsatisfiability, as per our results.

PN
=
SCRKEY

Experimental Results

10° ¢ —

: —
4 a2
10 o1 (MCMAS
103

(& 5 T]
0102 b
~ o +4++4;
O LA
§1 0 i e ++++++++++++*+ b
- L %##Jr*# |

1 00 = ++++++*++ - 3

ey X X%Xxxx“
1 ++¢:Hj+ X XX X%XX X% MW&%&WX& X
10 M&g}; IS]
-2 [! ! ! ! ! ! ! ! !]
0 10 20 30 40 50 60 70 80 90 100

Number of cryptographers
(i) MCMAS is faster, or equally fast, for n < 7, but slower for all n > 7;
(i) we can be faster than MCMAS by a factor of > 100 (e.g., when n = 32) when checking a4, whilst when
verifying a3 our speed-up is of several orders of magnitudes.

exp. specs.: a 4-core 2.4 GHz Intel Core i7 MacBook Pro with 16 GB of RAM running OS X 10.11.6. The version of ~ #=%

MCMAS is 1.2.2 and Z3 is 4.5.1; both tools have been compiled from source on the target machine. =
SURREY

More ...

» a more complicated example on the ThreeBallot voting
protocol (e.g., Lro moved from QBFs to Presburger
arithmetics.)

105 —
m=5a3.
104 mf 10[3 R |
%: o1 7
s M= a3
/'\10 m: ’a1A
8 mf !QZD
8102 7m_ yas R
Q i
S
I—101 B O
100 [K
101 7 = |
5 10 i - .

A

Number of voters R

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

[azin)
=
 SURREY

Take-home Message

» we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

=N
=
SCRKEY

Take-home Message

» we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

» we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

PN
=
SCRKEY

Take-home Message

» we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

» we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

» we traded off temporal expressivity, to deal with arbitrary
programming languages

PN
=
SCRKEY

Take-home Message

» we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

» we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

» we traded off temporal expressivity, to deal with arbitrary
programming languages

» space for improvements... in temporal operators, common
knowledge, translations modulo bespoke semantics...

PN
=
SCRKEY

Thank you

. for listening....

i.boureanu@surrey.ac.uk

Cheeky Slide...

» Do you know a British national who wishes to do a PhD in
formal verification of privacy(GBP 22k/year stipend, NCSC
project, with BT and the 5G Innovation Centre)?
https://www. jobs.ac.uk/job/BTV392/
phd-studentship-opportunity-security—-analysis—o:

» Do you know a prospective postdoc in formal verification of
privacy (EPSRC 3-year project, with Thales and Vector)?
https://www. jobs.ac.uk/job/BTX925/
research-fellow-in-formal-verification-of-priva

PN
=
SCRKEY

https://www.jobs.ac.uk/job/BTV392/phd-studentship-opportunity-security-analysis-of-systems-using-emerging-5g-technologies-5gtech-sec
https://www.jobs.ac.uk/job/BTV392/phd-studentship-opportunity-security-analysis-of-systems-using-emerging-5g-technologies-5gtech-sec
https://www.jobs.ac.uk/job/BTX925/research-fellow-in-formal-verification-of-privacy
https://www.jobs.ac.uk/job/BTX925/research-fellow-in-formal-verification-of-privacy

	Motivation & Aim
	Program-Epistemic Logic
	Verification of Program-Epistemic Logic
	Practical Experimentation
	Conclusions

