
Symbolic Verification of Epistemic
Properties in Programs

Ioana Boureanu (Univ. of Surrey, SCCS)

joint work @ IJCAI 2017,
with N. Gorogiannis (Middlesex, Facebook) and F. Raimondi

(Middelsex, Amazon)

Asking you...

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

Motivation

I epistemic logics, i.e., logics of knowledge – “knowing
logical facts”→ expressions of rich properties (e.g.,
unlinkability, anonymity)

I widely used in verification of general-purpose concurrent &
distributed SYSTEMS (e.g., Byzantine agreement) via
epistemic model checkers such as MCMAS, Verics, MCK,
etc....

Motivation

I epistemic logics, i.e., logics of knowledge – “knowing
logical facts”→ expressions of rich properties (e.g.,
unlinkability, anonymity)

I widely used in verification of general-purpose concurrent &
distributed SYSTEMS (e.g., Byzantine agreement) via
epistemic model checkers such as MCMAS, Verics, MCK,
etc....

Motivation ...

I epistemic logics widely used in systems’ model checkers
systems BUT...

I :(these are not epistemic specifications on program code
I :(it is hard to capture rich (e.g., first-order) state

specifications, since the base logic of most
temporal-epistemic verifiers is propositional

I !!? ... meanwhile, base logics of programs are very
expressive + predicate transformers are used to reduce
verification to FO queries to SMT solvers ...

Motivation ...

I epistemic logics widely used in systems’ model checkers
systems BUT...

I :(these are not epistemic specifications on program code
I :(it is hard to capture rich (e.g., first-order) state

specifications, since the base logic of most
temporal-epistemic verifiers is propositional

I !!? ... meanwhile, base logics of programs are very
expressive + predicate transformers are used to reduce
verification to FO queries to SMT solvers ...

Motivation ...

I epistemic logics widely used in systems’ model checkers
systems BUT...

I :(these are not epistemic specifications on program code
I :(it is hard to capture rich (e.g., first-order) state

specifications, since the base logic of most
temporal-epistemic verifiers is propositional

I !!? ... meanwhile, base logics of programs are very
expressive + predicate transformers are used to reduce
verification to FO queries to SMT solvers ...

Motivation ...

I epistemic logics widely used in systems’ model checkers
systems BUT...

I :(these are not epistemic specifications on program code
I :(it is hard to capture rich (e.g., first-order) state

specifications, since the base logic of most
temporal-epistemic verifiers is propositional

I !!? ... meanwhile, base logics of programs are very
expressive + predicate transformers are used to reduce
verification to FO queries to SMT solvers ...

Motivation ...

I epistemic logics widely used in systems’ model checkers
systems BUT...

I :(these are not epistemic specifications on program code
I :(it is hard to capture rich (e.g., first-order) state

specifications, since the base logic of most
temporal-epistemic verifiers is propositional

I !!? ... meanwhile, base logics of programs are very
expressive + predicate transformers are used to reduce
verification to FO queries to SMT solvers ...

Aim

I be able to verify epistemic properties of programs
I agents can OBSERVE certain program variables
I the program (i.e., state-transition relation) is KNOWN to all

agents
I focus on S5-like epistemic properties about program states

“agent observer1 knows that variable x is equal to y + 5”

“agent observer2 does not know that variable x is equal to
y + 5”

Aim

I be able to verify epistemic properties of programs
I agents can OBSERVE certain program variables
I the program (i.e., state-transition relation) is KNOWN to all

agents
I focus on S5-like epistemic properties about program states

“agent observer1 knows that variable x is equal to y + 5”

“agent observer2 does not know that variable x is equal to
y + 5”

Aim

I be able to verify epistemic properties of programs
I agents can OBSERVE certain program variables
I the program (i.e., state-transition relation) is KNOWN to all

agents
I focus on S5-like epistemic properties about program states

“agent observer1 knows that variable x is equal to y + 5”

“agent observer2 does not know that variable x is equal to
y + 5”

Aim
I be able to verify epistemic properties of programs
I agents can OBSERVE certain program variables
I the program (i.e., state-transition relation) is KNOWN to all

agents
I focus on S5-like epistemic properties about program states

“agent observer1 knows that variable x is equal to y + 5”

“agent observer2 does not know that variable x is equal to
y + 5”

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

Syntax Setup

I A a finite set of agents or program-observers
I V a countable set of variables
I p ⊆ V a non-empty set of program variables
I oA ⊆ p the variables the agent A ∈ A can observe
I nA = p \ oA variables agent A ∈ A cannot observe

Syntax Epistemic Language LK

I LQF base language = a quantifier-free, FO language
I LFO extension of LQF with quantifiers

φ :: = π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ∀x . φ | ∃x . φ

I LK extension of LQF with epistemic modalities KA

α ::= π | ¬α | α1 ∧ α2 | α1 ∨ α2 | α1 ⇒ α2 | KAα

Program-Epistemic Specifications L�K

I C a (possibly infinite) set of commands
I L�K extends LK with every formula β = �Cα,

meaning “at all final states of C, α holds”

Example
“at the end of the vote-counting, a partial observer (who can
see certain aspects of the program) does not know that voter 1
vote for candidate 1”:

�EVotingProgram¬Kpublic−observer V1,1,

where V1,1 is a formula in LQF which here is linear integer
arithmetic.

First-order Semantics

I state s : V → D.
I set of all states U

s |= π ⇐⇒ in accordance to interpretation I
s |= φ1 ◦ φ2 ⇐⇒ (s |= φ1) ◦ (s |= φ2)
s |= ¬φ ⇐⇒ s 6|= φ
s |= ∃x .φ ⇐⇒ ∃c ∈ D. s[x 7→ c] |= φ
s |= ∀x .φ ⇐⇒ ∀c ∈ D. s[x 7→ c] |= φ.

where ◦ is ∧, ∨ or⇒, and I is an interpretation of constants,
functions and predicates in LQF over the domain D.

The interpretation JφK of a first-order formula φ is the set of
states satisfying it, i.e., JφK = {s ∈ U | s |= φ}

Towards a Program-Epistemic Semantics

I Indistinguishability relation ∼X over states

s ∼X s′ ⇐⇒ ∀x ∈ X . (s(x) = s′(x)),

where X ⊆ V
I Transition relation (over states) of any command C

RC(s) = {s′ | (s, s′) ∈ RC} RC(W) =
⋃

s∈W RC(s)

I strongest postcondition operator is a partial function
SP(−,−) : LFO × C ⇀ LFO

SP(φ,C) = ψ iff JψK = RC(JφK)

Interpretation of a program specification β
The satisfaction relation W , s β

W , s π ⇐⇒ s |= π
W , s ¬α ⇐⇒ W , s 6 α
W , s α1 ◦ α2 ⇐⇒ (W , s α1) ◦ (W , s α2)
W , s KAα ⇐⇒ ∀s′ ∈W . (s ∼oA s′ =⇒ W , s′ α)
W , s �Cα ⇐⇒ ∀s′ ∈ RC(s). (RC(W), s′ α)

where ◦ is ∧, ∨, or⇒, and C ∈ C is a command.

I Validity of program specifications φ β
for all s ∈ JφK, we have that JφK, s β.

φ KAπ means that in all states satisfying φ, agent A knows π

φ �C¬KAπ means: if command C starts at a state satisfying
φ, then in all states where the execution finishes, agent A does
not know π

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

Reducing to First-Order Validity

I Recall: strongest postcondition operator is a partial
function SP(−,−) : LFO × C ⇀ LFO

SP(φ,C) = ψ iff JψK = RC(JφK)

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

... a translation τ : LK → LFO of epistemic formulas into the first-order language.

τ(φ, π) = π τ(φ, α1 ◦ α2)= τ(φ, α1) ◦ τ(φ, α2)
τ(φ,¬α)= ¬τ(φ, α) τ(φ, KAα) = ∀nA. (φ⇒ τ(φ, α))

Over-approximation

I Recall: strongest postcondition operator is a partial
function SP(−,−) : LFO × C ⇀ LFO

SP(φ,C) = ψ iff JψK = RC(JφK)

I a function f : LFO × C → LFO over-approximates the
strongest postcondition iff ... Jf (φ,C)K ⊇ RC(JφK) for all
φ ∈ LFO and C ∈ C

When the strongest postcondition can only be
over-approximated (such as in programming languages with
unbounded loops), we show that the validity of positive
epistemic specifications reduces to that of first-order fragments,
in a sound but incomplete way.

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

Simple, Loop-Free Programming Language

Command C SP(φ,C)

x := ∗ ∃y . φ[y/x]
x := e ∃y . (x = e[y/x] ∧ φ[y/x])
if(π) C1 else C2 SP(π ∧ φ,C1) ∨ SP(¬π ∧ φ,C2)
C1;C2 SP(SP(φ,C1),C2),

where x is a program variable and y is a fresh logical variable.

I SP(−,−) may only introduce existential quantifiers.
I If x /∈ FV (φ), then SP(φ, x := e) = (φ ∧ x = e). That is, if x

is unrestricted, no quantifiers are introduced.
I For a fixed C, the size of SP(φ,C) is polynomial in ‖φ‖.

An Example – The Dining Cryptographers
– used as evaluation case-study in verifying epistemic
properties

– dinner may have been paid by their employer, or by one of the agents.
– reveal whether one of the agents paid, but without revealing which one.
– each pair of adjacent agents sees a coin
– each announces the result of XORing three Booleans: the two coins
observable by her and the status of whether she paid for the dinner.
– the XOR of all announcements is proven to be equal to the disjunction of
whether any agent paid.

Instantiation
agents A = {0, . . . ,n − 1}
program variables p = {x} ∪ {pi , ci | 0 ≤ i < n},
x is the XOR of announcements; pi encodes whether agent i
has paid; and, ci encodes the coin shared between agents i − 1
and i .
observable variables by i ∈ A oi = {x ,pi , ci , ci+1 mod n},

ni = p \ oi .
protocol = an assignment C:

x :=
⊕n−1

i=0 pi ⊕ ci ⊕ c(i+1 mod n) (C)

initial states, I == at most one agent paid

I =
∧n−1

i=0

(
pi ⇒

∧n−1
j=0,j 6=i ¬pj

)
strongest postcondition

SP(I,C)= I ∧
(

x ⇔
⊕n−1

i=0 pi ⊕ ci ⊕ c(i+1 mod n)

)

Specifications

α1 = ¬p0 ⇒
((

K0
∧n−1

i=0 ¬pi

)
∨
(∧n−1

i=1 ¬K0pi

))
if agent 0 has not paid then she knows that no agent paid, or (in
case an agent paid) she does not know which one.

α2 = K0

(
x ⇔

∨n−1
i=0 pi

)
agent 0 knows that x is true iff one of the agents paid.

α3 = K0p1
agent 0 knows that agent 1 has paid

To verify I �Cα1, I �Cα2 and I 6 �Cα3

We construct the QBF formula SP(I,C) ∧ ¬τ(SP(I,C), αi), feed
it to Z3, and test for unsatisfiability, as per our results.

Experimental Results

10−2

10−1

100

101

102

103

104

105

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Number of cryptographers

α1α2α3α1 (MCMAS)

(i) MCMAS is faster, or equally fast, for n ≤ 7, but slower for all n > 7;
(ii) we can be faster than MCMAS by a factor of > 100 (e.g., when n = 32) when checking α1, whilst when
verifying α3 our speed-up is of several orders of magnitudes.

exp. specs.: a 4-core 2.4 GHz Intel Core i7 MacBook Pro with 16 GB of RAM running OS X 10.11.6. The version of
MCMAS is 1.2.2 and Z3 is 4.5.1; both tools have been compiled from source on the target machine.

More ...

I a more complicated example on the ThreeBallot voting
protocol (e.g., LFO moved from QBFs to Presburger
arithmetics.)

10−1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, α1m = 2, α2m = 2, α3m = 3, α1m = 3, α2m = 3, α3m = 5, α1m = 5, α2m = 5, α3

Motivation & Aim

Program-Epistemic Logic

Verification of Program-Epistemic Logic

Practical Experimentation

Conclusions

Take-home Message

I we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

I we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

I we traded off temporal expressivity, to deal with arbitrary
programming languages

I space for improvements... in temporal operators, common
knowledge, translations modulo bespoke semantics...

Take-home Message

I we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

I we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

I we traded off temporal expressivity, to deal with arbitrary
programming languages

I space for improvements... in temporal operators, common
knowledge, translations modulo bespoke semantics...

Take-home Message

I we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

I we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

I we traded off temporal expressivity, to deal with arbitrary
programming languages

I space for improvements... in temporal operators, common
knowledge, translations modulo bespoke semantics...

Take-home Message

I we gave program-epistemic specifications, expressing
requiremenst that given epistemic properties hold on all
final states of the program.

I we have an efficient method of reducing the validity of
program-epistemic specifications to appropriate queries to
tools such as SMT solvers

I we traded off temporal expressivity, to deal with arbitrary
programming languages

I space for improvements... in temporal operators, common
knowledge, translations modulo bespoke semantics...

Thank you

... for listening....

i.boureanu@surrey.ac.uk

Cheeky Slide...

I Do you know a British national who wishes to do a PhD in
formal verification of privacy(GBP 22k/year stipend, NCSC
project, with BT and the 5G Innovation Centre)?
https://www.jobs.ac.uk/job/BTV392/
phd-studentship-opportunity-security-analysis-of-systems-using-emerging-5g-technologies-5gtech-sec

I Do you know a prospective postdoc in formal verification of
privacy (EPSRC 3-year project, with Thales and Vector)?
https://www.jobs.ac.uk/job/BTX925/
research-fellow-in-formal-verification-of-privacy

https://www.jobs.ac.uk/job/BTV392/phd-studentship-opportunity-security-analysis-of-systems-using-emerging-5g-technologies-5gtech-sec
https://www.jobs.ac.uk/job/BTV392/phd-studentship-opportunity-security-analysis-of-systems-using-emerging-5g-technologies-5gtech-sec
https://www.jobs.ac.uk/job/BTX925/research-fellow-in-formal-verification-of-privacy
https://www.jobs.ac.uk/job/BTX925/research-fellow-in-formal-verification-of-privacy

	Motivation & Aim
	Program-Epistemic Logic
	Verification of Program-Epistemic Logic
	Practical Experimentation
	Conclusions

