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Transient Performance
“The transient approach checks types at uses, so the act of adding 
types to a program introduces more casts and may slow the 
program down (even in fully typed code).”  … “transient 
semantics...is a worst case scenario..., there is a cast at almost 
every call”

Chung, Li, Nardelli and Vitek, ECOOP 2018
“imposes a run-time checking overhead that is directly 
proportional to the number of [type annotations] in the program”

Greenman and Felleisen, ICFP 2018
“clear trend that adding type annotations adds performance 
overhead. The increase is typically linear.” 

Greenman and Migeed, PEPM 2018

 3



Microbenchmarks
  method foo9(xa : A, xb : B, xc : C, xd : D, xe : E) { 
    count := count + 1 
    foo8(a,b,c,d,e) 
  } 

  method foo8(xa : A, xb : B, xc : C, xd : D, xe : E) { 
    count := count + 1 
    foo7(a,b,c,d,e) 
  } 

  method foo7(xa : A, xb : B, xc : C, xd : D, xe : E) { 
    count := count + 1 
    foo6(a,b,c,d,e) 
  } 

 4



Microbenchmarks
  method foo9(xa    , xb    , xc    , xd    , xe    ) { 
    count := count + 1 
    foo8(a,b,c,d,e) 
  } 

  method foo8(xa    , xb    , xc    , xd    , xe    ) { 
    count := count + 1 
    foo7(a,b,c,d,e) 
  } 

  method foo7(xa    , xb    , xc    , xd    , xe    ) { 
    count := count + 1 
    foo6(a,b,c,d,e) 
  } 
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Microbenchmarks
  method foo9(xa : A, xb : B, xc : C, xd    , xe    ) { 
    count := count + 1 
    foo8(a,b,c,d,e) 
  } 

  method foo8(xa : A, xb : B, xc : C, xd    , xe    ) { 
    count := count + 1 
    foo7(a,b,c,d,e) 
  } 

  method foo7(xa : A, xb : B, xc : C, xd    , xe    ) { 
    count := count + 1 
    foo6(a,b,c,d,e) 
  } 
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Microbenchmarks
  method foo9(xa : A, xb : B, xc : C, xd : D, xe : E) { 
    count := count + 1 
    foo8(a,b,c,d,e) 
  } 

  method foo8(xa : A, xb : B, xc : C, xd : D, xe : E) { 
    count := count + 1 
    foo7(a,b,c,d,e) 
  } 

  method foo7(xa    , xb    , xc    , xd    , xe    ) { 
    count := count + 1 
    foo6(a,b,c,d,e) 
  } 
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5:18 Transient Typechecks Are (Almost) Free
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(a) Iteration 1.
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(b) Iteration 100.

Figure 5 Transient Typechecks are (Almost) Free. Two microbenchmarks, each with six variants,
demonstrate the common scenario of adding type annotations over time, which in our system does
not have an impact on peak performance. The benchmark variants di�er only in the increasing
number of method arguments that have type annotations. We show the result for the first benchmark
iteration (a) and the one hundredth (b). Moth (neither), i.e., Moth without our two optimizations
sees a linear increase in run time. For the first iteration, we see some di�erence between Moth (both)
and Moth (untyped). By the hundredth iteration, however, the compiler has eliminated the overhead
of the type checks and both Moth variants essentially have the same performance (independent of
the number of method arguments with type annotations).

5.6 Changes to Moth
Outlined earlier in Section 4, a secondary goal of our design was to enable the implementation
of our approach to be realized with few changes to the underlying interpreter. This helps to
ensure that each Grace implementation can provide type checking in a uniform way.

By examining the history of changes maintained by our version control, we estimate that
our implementation of Moth required 549 new lines and 59 changes to existing lines. The
changes correspond to the implementation of new modules for the type class (179 lines) and
the self-specializing type checking node (139 lines), modifications to the front end to extract
typing information (115 new lines, 14 lines changes) and finally the new fields and amended
constructors for AST nodes (116 new lines, 45 lines changes).

6 Discussion

6.1 The VM Could Not Already Know That
One of the key optimizations for our work and the work of others [6, 45] is the use of object
shapes to encode information about types (in our case), or type casts and assumptions (in
the case of gradually typed systems). The general idea is that a VM will already use object
shapes for method dispatches, field accesses, and other operations on objects. Thus any
further use to also imply type information can often be optimized away when the compiler
sees that the same checks are done, and therefore can be combined by optimizations such as
common subexpression elimination.
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Figure 5 Transient Typechecks are (Almost) Free. Two microbenchmarks, each with six variants,
demonstrate the common scenario of adding type annotations over time, which in our system does
not have an impact on peak performance. The benchmark variants di�er only in the increasing
number of method arguments that have type annotations. We show the result for the first benchmark
iteration (a) and the one hundredth (b). Moth (neither), i.e., Moth without our two optimizations
sees a linear increase in run time. For the first iteration, we see some di�erence between Moth (both)
and Moth (untyped). By the hundredth iteration, however, the compiler has eliminated the overhead
of the type checks and both Moth variants essentially have the same performance (independent of
the number of method arguments with type annotations).

5.6 Changes to Moth
Outlined earlier in Section 4, a secondary goal of our design was to enable the implementation
of our approach to be realized with few changes to the underlying interpreter. This helps to
ensure that each Grace implementation can provide type checking in a uniform way.

By examining the history of changes maintained by our version control, we estimate that
our implementation of Moth required 549 new lines and 59 changes to existing lines. The
changes correspond to the implementation of new modules for the type class (179 lines) and
the self-specializing type checking node (139 lines), modifications to the front end to extract
typing information (115 new lines, 14 lines changes) and finally the new fields and amended
constructors for AST nodes (116 new lines, 45 lines changes).

6 Discussion

6.1 The VM Could Not Already Know That
One of the key optimizations for our work and the work of others [6, 45] is the use of object
shapes to encode information about types (in our case), or type casts and assumptions (in
the case of gradually typed systems). The general idea is that a VM will already use object
shapes for method dispatches, field accesses, and other operations on objects. Thus any
further use to also imply type information can often be optimized away when the compiler
sees that the same checks are done, and therefore can be combined by optimizations such as
common subexpression elimination.

Iteration 100
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Goals
Not require type annotations 
  Dynamic types must be checked 
  Checking must be cheap 
  Run statically incorrect code 

Lightweight Implementation 
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Every object has a class 
Methods, fields, constants

Multipart names

Blocks for control

Non-local returns

Optionally typed

Modules as classes

Classes inside classes 

Everything is an object 
Methods, fields, constants

Multi-part & arity names

Blocks for control

Non-local returns

Optionally & gradually typed

Modules as objects

Classes inside classes

Objects inside methods

 15

Grace



 16

NS



Are We Fast Yet? 

 17

5:12 Transient Typechecks Are (Almost) Free
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Figure 1 Comparison of Java 1.8, Node.js 10.4, Higgs VM, and Moth. The boxplot depicts
the peak-performance results for the Are We Fast Yet benchmarks, each benchmark normalized
individually based on the result for Java, which means all results for Java are 1.0, and its box
appears as a line. The dots on the plot represent the geometric mean reported as averages. For
these benchmarks, Moth is within the performance range of JavaScript, as implemented by Node.js,
which makes Moth an acceptable platform for our experiments.

Figure 1 shows the results. We use Java as baseline since it is the fastest language
implementation in this experiment. Note that we perform a unit conversion on the results
separately for each benchmark, using the average of Java as 1 unit. While this conversion
does not change the distribution of the data, it allows us to show it neatly on one plot.

We see that Node.js (V8) is about 1.8x (min. 0.8x, max. 2.7x) slower than Java. Moth is
about 2.3x (min. 0.9x, max. 4.3x) slower than Java. As such, it is on average 31% (min.
≠16%, max. 2.3x) slower than Node.js. Compared to the Higgs VM, which is on these
benchmarks 10.4x (min. 1.5x, max. 163x) slower than Java, Moth reaches the performance of
Node.js more closely. With these results, we argue that Moth is a suitable platform to assess
the impact of our approach to gradual type checking, because its performance is close enough
to state-of-the-art VMs, and run-time overhead is not hidden by slow baseline performance.

5.3 Performance of Transient Gradual Type Checks

The performance overhead of our transient gradual type checking system is assessed based
on the Are We Fast Yet benchmarks as well as benchmarks from the gradual-typing literature.
The goal was to complement our benchmarks with additional ones that are used for similar
experiments and can be ported to Grace. To this end, we surveyed a number of papers [56,
62, 42, 6, 45, 55, 29] and selected benchmarks that have been used by multiple papers. Some
of these benchmarks overlapped with the Are We Fast Yet suite, or were available in di�erent
versions. While not always behaviorally equivalent, we chose the Are We Fast Yet versions
since we already used them to establish the performance baseline. The selected benchmarks
as well as the papers in which they were used are shown in Table 1.

The benchmarks were modified to have complete type information. To ensure correctness
and completeness of these experiments, we added an additional check to Moth that reports
absent type information to ensure each benchmark is fully typed. To assess the performance
overhead of type checking, we compare the execution of Moth with all checks disabled, i.e.,
the baseline version from Section 5.2, against an execution that has all checks enabled. We
did not measure programs that mix typed and untyped code because with our implementation
technique a fully typed program is expected to have the largest overhead.



def o = object {  
      method three {3} 
}
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def o = object {  
      method three {3} 
} 

o.three  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def o = object {  
      method three {3} 
} 

type Three = interface { 
     three 

} 
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def o = object {  
      method three {3} 
} 

type Three = interface { 
     three 

} 

def p : Three = o 

p.three
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def o = object {  
      method three {3} 
} 

type Three = interface { 
     three 

} 

method wantsThree( trois : Three ) { } 

wantsThree( o )  
 22



def o = object {  
      method four {3}  
} 

type Three = interface { 
     three 

} 

method wantsThree( trois : Three ) { } 

wantsThree( o ) //  should crash! 
 23



Transient Typechecks
method wantsThree( trois : Three ) { } 

method wantsThree( trois ) {  
   assert { Three.match(trois) } 
} 
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Table 1 Benchmarks selected from literature.

Fannkuch [62, 29]
Float [62, 42, 29]
Go [62, 42, 29]
NBody [36, 62, 29] used [40]
Queens [62, 42, 29] used [40]
PyStone [62, 42, 29]
Sieve [56, 42, 6, 45, 30] used [40]
Snake [56, 42, 6, 45, 30]
SpectralNorm [62, 42, 29]

Peak Performance

Figure 2 depicts the overall results comparing Moth, with all optimizations, against the
untyped version. The run-time overhead, after discarding the warmup iterations, is on
average 5% (min. ≠13%, max. 79%).
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Figure 2 A boxplot comparing the performance of Moth with and without type checking. The
plot depicts the run-time overhead on peak performance over the untyped performance. On average,
transient type checking introduces an overhead of 5% (min. ≠13%, max. 79%). The average is
indicated as a line with long dashes. Note that the axis is logarithmic to avoid distorting the
proportions of relative speedups and slowdowns.

The benchmark with the highest overhead of 79% is List. The benchmark traverses a
linked list and has to check the list elements individually. Unfortunately, the structure of
this list introduces checks that do not coincide with shape checks on the relevant objects.
We consider this benchmark a pathological case and discuss it in detail in Section 6.1.
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Figure 3 Plot of the run time for the first 100 iterations. The lines indicate the mean at iteration
n normalized to the untyped result, the lighter area indicates a 95% confidence interval. The first
iteration, i.e., mostly interpreted, seems to be a�ected significantly only for Mandelbrot, though CD
shows slower behavior in early warmup, too.

that determines the relationship between two types. The second column of Table 2 indicates
which optimization is applied, and the following columns show the mean, minimum, and
maximum number of invocations of the tests over all benchmarks.

The baselines without optimizations are the rows with the results for neither of the
optimizations being enabled. Depending on the benchmark, we see that the type tests are
done tens of millions to hundreds of millions times for a single iteration of a benchmark.

Our optimizations reduce the number of type test invocations dramatically. As a result,
the full check for the subtyping relationship is done only once for a specific type and super
type. Similarly, the generic type check is replaced by a shape check and thus reduces the
number of expensive type checks to the number of lexical locations that verify types combined
with the number of shapes a specific lexical location sees at run time.

Impact on Performance

Figure 4 shows how our optimizations contribute to the peak performance. The figure depicts
Moth’s peak performance over all benchmarks, depending on the activated optimizations. As
for Figure 1, we do a per-benchmark unit conversion using Moth (untyped), preserving the

ECOOP 2019



 27

Subtype Cache
Three A B …

o1 T

xa T

xb T

…

Defined Type
O

bs
er

ve
d 

Sh
ap

e 
(n

am
es

 in
di

ca
te

 o
rig

in
)

method wantsThree( trois : Three ) { } 
wantsThree( o )  
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Subtype Cache

Person 23:7

1 global record: Matrix

2
3 class TypeCheckNode(Node):

4
5 expected: Type

6
7 @Spec(static_guard=expected.check(obj))

8 def check(obj: Number):

9 pass

10
11 @Spec(static_guard=expected.check(obj))

12 def check(obj: String):

13 pass

14
15 ...

16
17 @Spec(

18 guard=obj.shape==cached_shape,

19 static_guard=expected.check(obj))

20 def check(obj: Object, @Cached(obj.shape) cached_shape: Shape):

21 pass

22
23 @Fallback

24 def check_generic(obj: Any):

25 T = get_type(obj)

26
27 if record[T, expected] is unknown:

28 record[T, expected] =

29 T.is_subtype_of(expected)

30
31 if not record[T, expected]:

32 raise TypeError(

33 "{obj} doesn’t implement {expected}")

Listing 5 An illustration of the type checking node that support type checking

CVIT 2016

R. Roberts, S. Marr, M. Homer, and J. Noble 5:9

1 global record: Matrix
2
3 class TypeCheckNode(Node):
4
5 expected: Type
6
7 @Spec(static_guard=�expected.check(obj)�)
8 def check(obj: Number):
9 pass

10
11 @Spec(static_guard=�expected.check(obj)�)
12 def check(obj: String):
13 pass
14
15 ...
16
17 @Spec(guard=�obj.shape==cached_shape�, static_guard=�expected.check(obj)�)
18 def check(obj: Object, @Cached(obj.shape) cached_shape: Shape):
19 pass
20
21 @Fallback
22 def check(obj: Any):
23 T = obj.get_type()
24
25 if record[T, expected] is unknown:
26 record[T, expected] = T.is_subtype_of(expected)
27
28 if not record[T, expected]:
29 raise TypeError(f"{obj} doesn�t implement {expected}")

Listing 5 A sketch of the specializations in TypeCheckNode to minimize the run-time overhead of
type checking. A specialization is a minimal set of operations for one specific situation, e.g., that
the value to be checked is some type of number.

4.2 Optimization
There are two aspects to our implementation that are critical for a minimal-overhead solution:

specialized executions of the type checking node, along with guards to protect these
specialized versions, and
a matrix to cache sub-typing relationships to eliminate redundant exhaustive subtype
tests.

Optimized Type Check Node. The first performance-critical aspect to our implementation
is the optimization of the type checking node. We rely on Tru�e and its Tru�eDSL [31].
This means we provide a number of special cases, which are selected during execution based
on the observed concrete kinds of objects. A sketch of our type checking node using a
pseudo-code version of the DSL is given in Listing 5. A simple optimization is for well known
types such as numbers (Line 8) or strings (Line 12). The methods annotated with @Spec
(shorthand for @Specialization) correspond to possible states in a state machine that is
generated by the Tru�eDSL. Thus, if a check node observes a number or a string, it will
check on the first execution only that the expected type, i.e., the one defined by some type
annotation, is satisfied by the object using a static_guard. If this is the case, the DSL
will activate this state. For just-in-time compilation, only the activated states and their
normal guards are considered. A static_guard is not included in the optimized code. If a
check fails, or no specialization matches, a fallback (i.e., check_generic in Line 22) will be
selected. This fallback will raise a type error when appropiate.
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method wantsThree( trois : Three ) { } 
wantsThree( o )  
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method wantsThree( trois : Three ) { } 
wantsThree( o )  
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call 
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1 global record: Matrix
2
3 class TypeCheckNode(Node):
4
5 expected: Type
6
7 @Spec(static_guard=�expected.check(obj)�)
8 def check(obj: Number):
9 pass

10
11 @Spec(static_guard=�expected.check(obj)�)
12 def check(obj: String):
13 pass
14
15 ...
16
17 @Spec(guard=�obj.shape==cached_shape�, static_guard=�expected.check(obj)�)
18 def check(obj: Object, @Cached(obj.shape) cached_shape: Shape):
19 pass
20
21 @Fallback
22 def check(obj: Any):
23 T = obj.get_type()
24
25 if record[T, expected] is unknown:
26 record[T, expected] = T.is_subtype_of(expected)
27
28 if not record[T, expected]:
29 raise TypeError(f"{obj} doesn�t implement {expected}")

Listing 5 A sketch of the specializations in TypeCheckNode to minimize the run-time overhead of
type checking. A specialization is a minimal set of operations for one specific situation, e.g., that
the value to be checked is some type of number.

4.2 Optimization
There are two aspects to our implementation that are critical for a minimal-overhead solution:

specialized executions of the type checking node, along with guards to protect these
specialized versions, and
a matrix to cache sub-typing relationships to eliminate redundant exhaustive subtype
tests.

Optimized Type Check Node. The first performance-critical aspect to our implementation
is the optimization of the type checking node. We rely on Tru�e and its Tru�eDSL [31].
This means we provide a number of special cases, which are selected during execution based
on the observed concrete kinds of objects. A sketch of our type checking node using a
pseudo-code version of the DSL is given in Listing 5. A simple optimization is for well known
types such as numbers (Line 8) or strings (Line 12). The methods annotated with @Spec
(shorthand for @Specialization) correspond to possible states in a state machine that is
generated by the Tru�eDSL. Thus, if a check node observes a number or a string, it will
check on the first execution only that the expected type, i.e., the one defined by some type
annotation, is satisfied by the object using a static_guard. If this is the case, the DSL
will activate this state. For just-in-time compilation, only the activated states and their
normal guards are considered. A static_guard is not included in the optimized code. If a
check fails, or no specialization matches, a fallback (i.e., check_generic in Line 22) will be
selected. This fallback will raise a type error when appropiate.
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Figure 4 Performance Impact of the Optimizations on the Peak Performance over all benchmarks.
The boxplot shows the performance of Moth normalized to the untyped version, i.e., without any
type checks. This means all results for Moth (untyped) are 1.0 and its box appears as a line. The
dots on the plot represent the geometric mean reported as averages. The performance of Moth
with both optimizations and Moth with only the node for optimized type checks are identical. The
subtype check cache improves performance over the unoptimized version, but does not contribute to
the peak performance.

In this section, we show that this is not necessarily the case on our system. For this
purpose we use two microbenchmarks, Check and Nest, which have at their core method
calls with 5 parameters. The Check benchmark calls the same method 10 times in a row, i.e.,
it has 10 call sites. The Nest benchmark has 10 methods with identical signatures, which
recurse from the first one to the last one. Thus, there are still 10 method calls, but they
are nested in each other. In both benchmarks, each method increments a counter, which
is checked at the end of the execution to verify that both do the same number of method
activations, and only the shape of the activation stack di�ers.

Each benchmark exists in six variants, each variant in a separate file, going from having
no type annotations over annotating only the first method parameter to annotating all 5
parameters. To demonstrate the impact of compilation, we present the results for the first
iteration as well as the hundredth iteration. The first iteration is executed at least partially
in the interpreter, while the hundredth iteration executes fully compiled.

Figure 5 shows that such a common scenario of methods being gradually annotated with
types does not incur an overhead on peak performance in our system. The plot shows the
mean of the run time for each benchmark configuration. Furthermore, it indicates a band
with the 95% confidence interval. The yellow line, Moth (neither), corresponds to our Moth
with type checking but without any optimizations. For this case, we see that the performance
overhead grows linearly with the number of type annotations.

For Moth (both) and Moth (untyped), we see for the first iteration that the band of
confidence intervals diverges, indicating that the additional type checks have an impact
on startup performance. In contrast the confidence intervals overlap for the hundredth
iteration, which shows that Moth does not su�er from a general linear overhead when
adding type checks. Instead, most type checks do not have an impact on peak performance.
However, as previously argued for the List benchmark, this is only the case for checks that
can be subsumed by shape checks (shape checks are performed whether or not type checks
are present).
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4.4 E�ectiveness of Optimizations336

To characterize the concrete impact of our two optimizations, i.e., the optimized type checking337

node, which replaces complex type tests with checks for object shapes, and our matrix to338

cache sub-typing information, we look at the number of type checks performed by the339

benchmarks, as well as the impact on peak performance.340

Impact on Performed Type Tests341

Table 2 gives an overview of the number of type tests done by the benchmarks during execution.342

We distinguish two operations check_generic and is_subtype_of, which correspond to343

the operations in Line 24 and Line 5 of Listing 4. Thus, check_generic is the test called344

whenever a full type check has to be performed, and is_subtype_of is the part of the check345

that determines the relationship between two types. The second column of Table 2 indicates346

which optimization is applied, and the following columns show the mean, minimum, and347

maximum number of invocations of the tests over all benchmarks.348

Table 2 Type Test Statistics over all Benchmarks. This table shows how many of the type tests
can be avoided based on our two optimizations. With the use of an optimized node that replaces
type checks with simple object shape checks, check_generic is invoked only for the first time that a
lexical location sees a specific object shape, which eliminates run-time type checks almost completely.
Using our subtype matrix that caches type-check results, invocations of is_subtype_of are further
reduced by an order of magnitude.

Type Test Enabled Optimization mean #invocations min max
check_generic Neither 137,525,845 11,628,068 896,604,537

Subtype Cache 137,525,845 11,628,068 896,604,537
Optimized Node 292 68 1,012
Both 292 68 1,012

is_subtype_of Neither 134,125,215 11,628,067 896,604,534
Subtype Cache 16 10 29
Optimized Node 292 68 1,012
Both 16 10 29

The baselines without optimizations are the rows with the results for neither of the349

optimizations being enabled. Depending on the benchmark, we see that the type tests are350

done tens of millions to hundreds of millions times for a single iteration of a benchmark.351

Our optimizations reduce the number of type test invocations dramatically. As a result,352

the full check for the subtyping relationship is done only once for any specific type and a353

possible super type. Similarly, the generic type check is replaced by a shape check and thus354

minimizes the number of expensive type checks to the number of lexical locations that verify355

types combined with the number of shapes a specific lexical location sees at run time.356

Impact on Performance357

Figure 4 shows how our optimizations contribute to the peak performance. The figure358

depicts Moth’s average peak performance over all benchmarks, depending on the activated359

optimizations. As seen before, the untyped version is faster by 6%. Moth with both360

optimizations enabled as well as Moth with the optimized type-check node (cf. Listing 4)361
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Pathology

79%
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23:16 Transient Typechecks are (Almost) Free

1 var elem: ListElement := headOfList

2 while (...) do {

3 elem := elem.next

4 }

Listing 6 Example for dynamic type checks not corresponding to existing checks.

5 Discussion408

5.1 The VM Could Not Already Know That409

One of the key optimizations for our work and the work of others [42, 6] is the use of object410

shapes to encode information about types (in our case), or type casts and assumptions (in411

the case of gradually typed systems).412

The general idea is that a VM will already use object shapes for method dispatches, field413

accesses, and other operations on objects. Thus any further use to also imply type information414

can often be optimized away when the compiler sees that the same checks are done (and415

therefore can be combined). This is similar to the elimination of other side-e�ect-free common416

subexpressions.417

This assumption breaks, however, when checks are introduced that do not correspond418

to those that exist already. As described in Section 3, our approach introduces checks for419

reading and writing to variables. Listing 6 gives an example of a pathological case. It is420

a loop traversing a linked list. For this example our approach introduces a check, for the421

ListElement type, when (1) assigning to and reading from elem and (2) when activating422

the next method. The checks for reading from elem and activating the method can be423

combined with the dispatch’s check on object shape. Unfortunately, the compiler cannot424

remove the check when writing to elem, because it has no information about what value will425

be returned from next, and so it needs to preserve the check to be able to trigger an error426

on the assignment. For our List benchmark, this check induces an overhead of 76%.427

5.2 Optimizations428

As a simplification, we currently check variable access on both reads and writes. This429

approach simplifies the implementation, because we do not need to adapt all built-ins, i.e.,430

all primitive operations provided by the interpreter. One optimization could be to avoid431

read checks. A type violation can normally only occur when writing to a variable, but not432

when reading. However, to maintain the semantics, this would require us to adapt many433

primitives; such as operations that activate blocks to check their arguments, or that write434

to variables or fields. With our current implementation we get errors as soon as user code435

accesses fields, which simplifies the implementation.436

Another optimization could be to use Tru�e’s approach to self-specialization [64] and437

propagate type information to avoid redundant checks. At the moment, Tru�e interpreters438

typically use self-specialization to specialize the AST to avoid boxing of primitive types. This439

is done by speculating that some subtree always returns the expected type. If this is not the440

case, the return value of the subtree is going to be propagated via an exception, which is441

caught and triggers respecialization. This idea could possibly be used to encode higher-level442

type information for return values, too. This could be used to remove redundant checks in443

the interpreter by simply discovering at run time that whole subexpressions conform to the444



Local Semantics
def o = object {  
      method three -> Unknown {3} 
} 
type ThreeString = interface { 
     three -> String 

} 
def t : ThreeString = o  
printString (t.three)
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Lexical Semantics
def o = object {  
      method three -> Unknown {3} 
} 
type ThreeString = interface { 
     three -> String 

} 
def t : ThreeString = o  
printString (t.three)
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Shallow Semantics
def o = object {  
      method three -> Number {3} 
} 
type ThreeString = interface { 
     three -> String 

} 
method wantsThree( trois : ThreeString ) {} 
wantsThree( o )
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Deep Semantics
def o = object {  
      method three -> Number {3} 
} 
type ThreeString = interface { 
     three -> String 

} 
method wantsThree( trois : ThreeString ) {} 
wantsThree( o ) 
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Deep emulates Shallow
def o = object {  
      method three -> Number {3} 
} 
type Three = interface { 
     three -> Unknown 

} 
method wantsThree( trois : Three ) {} 
wantsThree( o ) 
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Concrete Semantics
def o = object {  
      method three -> Unknown {3} 
} 
type ThreeString = interface { 
     three -> String 

} 
method wantsThree( trois : ThreeString ) {} 
wantsThree( o ) 
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Graceful Semantics?
def o = object {  
      method three -> Unknown {3} 
} 
type ThreeString = interface { 
     three -> String 

} 
method wantsThree( trois : ThreeString ) {} 
wantsThree( o ) 
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Pathology
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for (1.. innerIterations) do  
 { i: Number -> 
   system.advance(0.01) 
  }

1.asInteger.to(innerIterations) do  
 { i: Number -> 
   system.advance(0.01) 
  }



Dialects
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138 M. Homer et al.

SomeDialect

ModuleC

dialect
"SomeDialect"

...

diaMeth
...

DialectDialect

SomeDialect

dialect
"DialectDialect"

method

diaMeth {
...
}

Fig. 1. Object nesting with dialects. The declaration dialect "d" logically nests the current mod-
ule inside the module d. Notice that dialect use is not transitive: ModuleC is inside SomeDialect,
and SomeDialect is inside DialectDialect, but ModuleC is not in DialectDialect.

When no dialect is specified, the module is assumed to be written in the standard
Grace language, which uses the standard prelude as its dialect. The dialect mechanism
thus provides a coherent explanation of how Grace’s standard prelude works: a program
in standard Grace generates a module object nested inside the standard prelude object.
Because a dialect replaces this nesting, the author of a dialect can choose whether or not
to expose the standard prelude’s methods to their clients. If they wish, they can write

inherits StandardPrelude.methods

at the top of their dialect, and expose all of the methods of standard Grace.
A module that defines a dialect may itself be written in a dialect. This reveals a

difference between dialectical nesting and other kinds of lexical nesting: the dialect is
the outermost lexical scope, so dialectical nesting is not transitive, as shown in Fig. 1.
The reason for this design decision is that special-purpose dialects, particularly those
defining educational subsets, will commonly be less powerful than the language as a
whole. These dialects will thus typically be written in a dialect — such as standard
Grace — that provides the dialect writer with features that should not be exposed to
clients.

3.2 Pluggable Checkers

As well as providing new definitions, dialects may restrict access to particular features
of the language, or offer additional and more specific error and warning messages. The
latter are useful because novice students can benefit from error messages that are tai-
lored to the more restricted things that they are trying to do, compared to more advanced
programmers.

Restrictions and new error messages are implemented by the dialect module defining
a checker method, which is executed when modules written in the dialect are compiled.



Into the Gracer-verse?
method wantsThree( trois : ThreeString ) { 

method wantsThree( trois ) {  
   assert { ThreeString.match(trois) } 
} 
  
method wantsThree( trois’’ ) {  
   def trois’ = ThreeString.match(trois’’) 
   assert { trois’ } 
   def trois = trois’.result } 45



Even more semantics
Optional vs Mandatory  
Structural vs Nominal 
Erasure vs Shallow vs Deep 
Symmetric vs Asymmetric 
Local vs Lexical vs Reference vs Global 
Identity vs Chaperones vs Coercions 
Pure vs Impure 
Crash vs Exceptions vs Warnings
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Related Work
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Conclusions?
Transient checks (almost) for free 

Use a “real” VM 

Steal one if you can 

Dynamic vs Static optimisation 

Many more gradual semantics…
 48
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