

What You Needa Know About Yoneda

Jeremy Gibbons S-REPLS #12, July 2019

What You Needa Know About Yoneda Jeremy Gibbons

1. Nobuo Yoneda

- 1930-1996
- Professor of Theoretical Foundations of Information Science, University of Tokyo
- member of IFIP WG2.1, contributor to discussions about Algol 68, major role in Algol N
- but primarily an algebraist

2. The Yoneda Lemma

"Arguably the most important result in category theory" (Emily Riehl). The *Yoneda Lemma*, formally:

For \mathbb{C} a locally small category, $[\mathbb{C}, \mathbb{S}et](\mathbb{C}(A, -), F) \simeq F(A)$, naturally in $A \in \mathbb{C}$ and $F \in [\mathbb{C}, \mathbb{S}et]$.

From left to right, take nt ϕ : $\mathbb{C}(A, -) \rightarrow F$ to $\phi_A(id_A) \in F(A)$. From right to left, take element $x \in F(A)$ to nt ϕ such that $\phi_B(f) = F(f)(x)$.

As a special case, the *Yoneda Embedding*:

The functor $Y : \mathbb{C}^{op} \to [\mathbb{C}, \mathbb{S}et]$ is full and faithful, and injective on objects.

 $[\mathbb{C}, \mathbb{S}et](\mathbb{C}(A, -), \mathbb{C}(B, -)) \simeq \mathbb{C}(B, A)$

Quite fearsomely terse!

3. The Yoneda Lemma, philosophically

- roughly, "a thing is determined by its relationships with other things"
- in English, you can tell a lot about a person by the company they keep
- in Japanese, 人間 ('ningen', *human being*) constructed from 人 ('nin', *person*) and 間 ('gen', *between*),
- in Euclidean geometry, a point 'is' just the lines that meet there
- in poetry, *c'est l'exécution du poème qui est le poème* (Valéry)
- in music, die Idee der Interpretation gehört zur Musik selber und ist ihr nicht akzidentiell (Adorno)
- in sculpture, need to see a work from all angles in order to understand it (Mazzola)

4. The Yoneda Lemma, computationally

Approximate category *Set* by Haskell:

- objects *A* are types, arrows *f* are functions
- functors are represented by the type class *Functor*
- natural transformations are polymorphic functions.

Then Yoneda representation *Yo* $f a \simeq f a$ of functorial datatypes:

data *Yo*
$$f a = Yo \{unYo :: \forall x . (a \to x) \to f x\}$$

fromYo :: *Yo* $f a \to f a$
fromYo $y = unYo$ y *id* -- apply to identity
toYo :: *Functor* $f \Rightarrow f a \to Yo f a$
toYo $x = Yo (\lambda h \to fmap h x)$ -- use functorial action

—"an *F* of *A*s is a method for yielding an *F* of *X*s, given an $A \rightarrow X$ ".

5. The Yoneda Lemma, dually

Now consider one half of this bijection:

$$\forall A . F(A) \rightarrow (\forall X . (A \rightarrow X) \rightarrow F(X))$$

$$\simeq \forall A . \forall X . F(A) \rightarrow (A \rightarrow X) \rightarrow F(X)$$

$$\simeq \forall A . \forall X . (F(A) \times (A \rightarrow X)) \rightarrow F(X)$$

$$\simeq \forall X . \forall A . (F(A) \times (A \rightarrow X)) \rightarrow F(X)$$

$$\simeq \forall X . (\exists A . F(A) \times (A \rightarrow X)) \rightarrow F(X)$$

Hence a kind of dual, 'co-Yoneda': $(\exists x . (x \rightarrow a, f x)) \simeq f a$ for functor f—"an F of Xs can be represented by an F of As and an abstraction $A \rightarrow X$ ". Indeed, for functor F and object X:

 $(\exists A \, . \, F(A) \times (A \to X)) \simeq F(X)$

But even for non-functor *F*, lhs is functorial...

IoT toaster

Signature of commands for remote interaction:

data Command :: $* \rightarrow *$ where Say :: String \rightarrow Command () Toast :: Int \rightarrow Command () Sense :: () \rightarrow Command Int

GADT, but not a functor; type *index* rather than type *parameter*. So no free monad, for representing terms.

Co-Yoneda trick to the rescue:

data Action $a = \exists r . A (Command r, r \rightarrow a)$

Action is a functor, even though Command is not.

6. The Yoneda Lemma, familiarly (1)

Any preorder (A, \leq) forms a degenerate category: arrow $a \rightarrow b$ iff $a \leq b$. Proof by *indirect inequality* or *indirect order*

 $(b \leq a) \Leftrightarrow (\forall c . (a \leq c) \Rightarrow (b \leq c))$

is the Yoneda Embedding in category $\mathbb{P}re(\leqslant)$:

 $[\mathbb{P}re(\leqslant), \mathbb{S}et](\mathbb{P}re(\leqslant)(a, -), \mathbb{P}re(\leqslant)(b, -)) \simeq \mathbb{P}re(\leqslant)(b, -)(a) = \mathbb{P}re(\leqslant)(b, a)$

- homset $\mathbb{P}re(A, \leq)(b, a)$ is a 'thin set': singleton or empty
- homfunctor \mathbb{P} *re*(A, \leq)(a, –) takes $c \in A$ to singleton set when $a \leq c$, else empty
- natural transformation $\phi : \mathbb{P}re(A, \leq)(a, -) \rightarrow \mathbb{P}re(A, \leq)(b, -)$ is function family $\phi_c : \mathbb{P}re(A, \leq)(a, c) \rightarrow \mathbb{P}re(A, \leq)(b, c)$
- so ϕ_c is a witness that if $\mathbb{P}re(A, \leq)(a, c) \neq \emptyset$ then $\mathbb{P}re(A, \leq)(b, c) \neq \emptyset$

The Yoneda Lemma, familiarly (2)

Any functor *F* preserves isos:

 $F(f) \circ F(g) = id \iff F(f \circ g) = F(id) \iff f \circ g = id$

Full and faithful functor (ie bijection on arrows) also *reflects* isos. Hom functor $\mathbb{C}(-, =)$ is full and faithful; so

 $(\mathbb{C}(B,-)\simeq\mathbb{C}(A,-))\iff (A\simeq B)\iff (\mathbb{C}(-,A)\simeq\mathbb{C}(-,B))$

in particular for $\mathbb{C} = \mathbb{P}re(\leq)$, the rule of *indirect equality*:

 $(b = a) \Leftrightarrow (\forall c . (a \leq c) \Leftrightarrow (b \leq c))$

The Yoneda Lemma, familiarly (3)

Cayley's Theorem

every group is isomorphic to a group of bijections and similarly every monoid is isomorphic to a monoid of endomorphisms

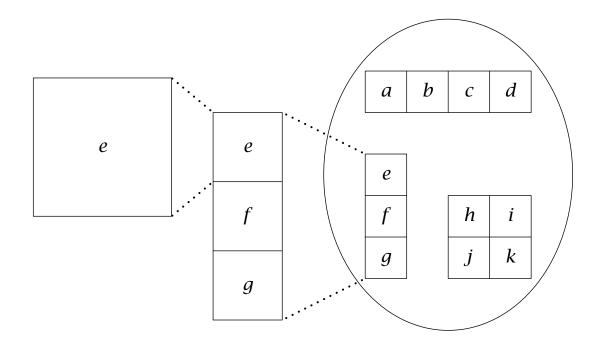
 $(M, \oplus, e) \simeq (\{(m\oplus) \mid m \in M\}, (\circ), id)$

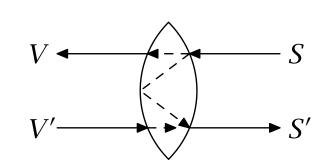
A standard trick, in particular for the monoid ([A], +, []):

represent list *xs* by function (*xs*++), linear-time ++ by constant-time \circ

7. Optics

- compositional references (Kagawa, Oles)
- *lens* combinators (Foster, Pierce)





11

Concrete optics

A view onto a product type:

data Lens $a b s t = Lens \{ view :: s \rightarrow a, update :: s \times b \rightarrow t \}$

A view onto a sum type:

data Prism $a b s t = Prism \{match :: s \rightarrow t + a, build :: b \rightarrow t \}$

Common specialization, for adapting interfaces:

data Adapter $a b s t = Adapter \{ from :: s \to a, to :: b \to t \}$

But they don't compose well—what is a *Lens* composed with a *Prism*?

Profunctor optics

Formally, functors $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$. Informally, *transformers*, which *consume and produce*:

class *Profunctor* p **where** $dimap :: (c \rightarrow a) \rightarrow (b \rightarrow d) \rightarrow p \ a \ b \rightarrow p \ c \ d$

Plain functions \rightarrow are the canonical instance:

instance *Profunctor* (\rightarrow) **where** *dimap* $f g h = g \circ h \circ f$

Profunctor adapter adapts transformer *p a b* to *p s t*, *uniformly* in *p*:

type *AdapterP* $a b s t = \forall p$. *Profunctor* $p \Rightarrow p a b \rightarrow p s t$

Now ordinary functions, so compose straightforwardly. Similar constructions for lenses and prisms.

Double Yoneda Embedding

Key insight, by Bartosz Milewski, from two applications of Yoneda:

 $[[\mathbb{C}, \mathbb{S}et], \mathbb{S}et]((-)A, (-)B) \simeq \mathbb{C}(A, B)$

In Haskell, this says:

$$(\forall f \text{ . Functor } f \Rightarrow f a \rightarrow f b) \simeq (a \rightarrow b)$$

Indeed, these are inverses:

 $fromFun :: (\forall f . Functor f \Rightarrow f a \to f b) \to (a \to b)$ $fromFun phi = unId \circ phi \circ Id$ -- apply to identity $toFun :: (a \to b) \to (\forall f . Functor f \Rightarrow f a \to f b)$ toFun = fmap-- use functorial action

But this works in any category, including $\mathbb{C}^{op} \times \mathbb{C}$. Hence *AdapterP a b s t* ~ *Adapter a b s t*. Similarly for lenses and prisms.

8. Conclusions

- Yoneda Lemma is essentially simple, but surprisingly deep
- profunctor optics are practical and powerful, but mysterious
- Yoneda simplifies previously convoluted proofs of equivalence
- some of these ideas due to Guillaume Boisseau, Ed Kmett, Russell O'Connor, Matthew Pickering, Bartosz Milewski
- paper with GB at ICFP 2018